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Abstract

Heat transfer to viscoelastic fluids is frequently encountered in various industrial processing. In this investigation an

analytical solution was obtained to predict the fully developed, steady and laminar heat transfer of viscoelastic fluids

between parallel plates. One of the plates was stationary and was subjected to a constant heat flux. The other plate

moved with constant velocity and was insulated. The simplified Phan-Thien–Tanner (SPTT) model, believed to be a

more realistic model for viscoelastic fluids, was used to represent the rheological behavior of the fluid. The energy

equation was solved for a wide range of Brinkman number, dimensionless viscoelastic group, and dimensionless

pressure drop. Results highlight the strong effects of these parameters on the heat transfer rate.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The flow and heat transfer behavior of viscoelastic

fluids between parallel plates is of special engineering

interest. One of the most important processes in industry

is extrusion. Since the gap between the barrel and the

screw of extruder is small, assuming a fluid flowing be-

tween parallel plates leads to representative results.

There exist a large number of parameters in the extru-

sion processes which influence significantly the produc-

tion rate and the quality of the final product. The

rheological behavior of the processing fluid plays a key

role in the flow and heat transfer through the extruders.

The fluids employed in extruders exhibit viscoelastic

non-Newtonian behavior. One of the frequently used

viscoelastic model to represent the rheological behavior
* Corresponding author. Tel.: +98-311-3915625; fax: +98-

311-3912677.

E-mail address: etemad@cc.iut.ac.ir (S.Gh. Etemad).

0017-9310/$ - see front matter � 2004 Elsevier Ltd. All rights reserv

doi:10.1016/j.ijheatmasstransfer.2004.03.026
of these fluids is the Phan-Thien–Tanner (PTT) model

which was derived by network theory (Phan-Thien and

Tanner [1], Phan-Thien [2]). Another parameter which

bears great significance on heat transfer is viscous dis-

sipation. When the viscosity of the fluid and/or the

velocity gradient is high, the dissipation term becomes

important and its order of magnitude is comparable

with the convection and diffusion terms of the energy

equation.

Several investigations have been done in the field of

non-Newtonian fluid flow and heat transfer between

parallel plates. Etemad et al. [3] solved the simulta-

neously developing case of the motion and energy

equation for power law fluids between parallel station-

ary plates when the variation of viscosity with temper-

ature and viscous dissipation could not be neglected.

They solved the problem numerically using finite ele-

ment method and, as a special case, calculated the flow

and heat transfer characteristics for fully developed

conditions. Chou et al. [4] considered the channel non-

Newtonian heat transfer including viscous dissipation
ed.
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Nomenclature

Br Brinkman number

Cp heat capacity

De Deborah number kV
H

� �
G dimensionless pressure gradient

H gap between of the parallel plate

k thermal conductivity

Nu Nusselt number hð2HÞ
k

p pressure

q heat flux

Re Reynolds number q�uð2HÞ
g

� �
T temperature

u velocity

V velocity of moving plate

x axial coordinate

y lateral coordinate

Greek symbols

a defined in Appendix A

b defined in Appendix A

d defined in Appendix A

e extensional parameter of the PTT model

g viscosity coefficient of the PTT model

h dimensionless temperature

k relaxation time in the PTT model

q density

s stress tensor

Subscripts

m mean value

N Newtonian fluid

0 value at the stationary plate

w value at the heated plate

Superscripts

� refers to dimensionless quantities

– refers to the average value

y

x

H

V

Heated Stationary Plate 

Moving Insulated Plate 

Fig. 1. Schematic diagram of flow domain.
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for stationary parallel plates. Patel and Ingham [5] ob-

tained an analytical solution for the mixed convection of

power law model non-Newtonian fluid between parallel

plates with a constant wall temperature boundary con-

dition. Olek [6] used a specific eigenfunction expansion

to derive an exact solution for heat transfer between two

stationary parallel plates. Lawal and Dilhan [7] devel-

oped an analytical solution for the viscoplastic (Hershel

Bulkley) model fluid flow and heat transfer in noniso-

thermal screw extrusion processing. Davaa et al. [8]

solved numerically the fluid flow and heat transfer

equation for a modified power law fluid in Couette–

Poiseuille laminar flow between parallel plates. Recently

Pinho et al. [9] considered the problems of laminar

axisymmetric forced convection of simplified PTT vis-

coelastic model fluid flowing between parallel plates with

an imposed constant wall heat flux.

So far, heat transfer between parallel plates has not

yet been considered for the case of a PTT rheological

model fluid flowing between parallel plates with one

plate moving at constant speed. The aim of the present

study is to develop an analytical solution for Couette–

Poiseuille laminar flow heat transfer of a PTT visco-

elastic model fluid flowing between parallel plates and

for which viscous dissipation cannot be neglected.
2. Mathematical formulation

Fig. 1 presents a schematic diagram of the fluid flow

and heat transfer domains. The channel consists of two

parallel infinite plates. One plate is stationary and the

other is moving with constant velocity. The problem
under consideration is steady, laminar, and hydrody-

namically and thermally fully developed. For internal

laminar flow the entrance length depends on the Rey-

nolds number and polymeric liquids usually have high

viscosity so the Reynolds number for this process is very

small, therefore entrance length can be neglected and

fully developed flow can be assumed. The physical fluid

properties are assumed constant. The governing energy

equation describing this problem, with the assumption

of appreciable viscous dissipation and negligible axial

heat conduction, can be represented by the following

equation:

qcpu
oT
ox

¼ k
o2T
oy2

þ s
du
dy

ð1Þ

In this study, the stationary plate is subjected to a

constant heat flux, and the moving plate is insulated.

The boundary conditions are

y ¼ 0; �k
oT
oy

¼ qw ð2Þ

y ¼ H ;
oT
oy

¼ 0 ð3Þ
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When the temperature profile is fully developed one can

write (Bejan [10]):

o

ox
Tw � T
Tw � Tm

� �
¼ 0 ð4Þ

Therefore

oT
ox

¼ oTm

ox
¼ Const: ð5Þ

where Tm is the bulk temperature of the fluid. Perform-

ing an energy balance over an infinitesimal element dx of

fluid, the following expression is obtained (Shah and

London [11]):

oTm

ox
¼ 1

qcp�uH
qw

�
þ
Z H

0

s
du
dy

dy
�

ð6Þ

Combining Eqs. (1), (5) and (6), the dimensionless en-

ergy equation is derived as follows:

o2h
oy�2

þ Br s�
du�

dy�

�
� u�

�u�

Z 1

0

s�
du�

dy�
dy�
�

¼ u�

�u�
ð7Þ

where

y� ¼ y
H
; u� ¼ u

V
; s� ¼ sH

gV
ð8Þ

For constant heat flux boundary condition:

h ¼ T � Tm

qwH=k
; Br ¼ gV 2

Hqw

ð9Þ

The Nusselt number at the heated (stationary) plate is

Nu ¼ 2

hw

ð10Þ

The dimensionless boundary conditions become

y� ¼ 0;
oh
oy�

¼ �1 ð11Þ

y� ¼ 1;
oh
oy�

¼ 0 ð12Þ
3. Analytical solution

In this investigation the simplified Phan-Thien–Tan-

ner (SPTT) constitutive equation with linearized stress

coefficient was employed. This rheological equation

(SPTT) can be described by the following expression

(Bird [12]):

ZðtrsÞs þ ksð1Þ ¼ �g _c ð13Þ

where g is the viscosity coefficient of the model, k is the

relaxation time and trs is the trace of the stress tensor s.
sð1Þ is the convected time derivative of the stress tensor.

The stress coefficient Z has an exponential form that
may be linearized when the deformation rate of fluid’s

elements is small:

ZðtrsÞ ¼ 1� ek
trs
g

ð14Þ

Performing the stress tensor component analysis and

solving of the continuity and momentum equations

(Hashemabadi et al. [13]) the dimensionless profiles of

velocity (u�), shear rate _c�yx

� �
, and shear stress s�yx

� �
were obtained:

u� ¼ 1

2
y�ðGy� � 2s�0Þ

þ 1

4
eDe2y� Gy� � 2s�0

� �
ðGy�Þ2 þ Gy� � 2s�0

� �2h i
ð15Þ

_c�yx ¼
du�

dy�
¼ 1þ 2eDe2ðGy� � s�0Þ

2
� �

ðGy� � s�0Þ ð16Þ

s�yx ¼ s�0 � Gy� ð17Þ

where

De ¼ kV
H

; G ¼ H 2

gv
dp
dx

� �
ð18Þ

G, De and s�0 are the dimensionless pressure group,

Deborah number and shear stress on the stationary

plate, respectively. The underlined terms arise from the

SPTT model. For Newtonian fluids, the underlined term

in Eq. (15) is equal to zero whereas it is equal to one in

Eq. (16). Solving the energy equation (7) for constant

heat flux boundary condition, using the dimensionless

profiles of Eqs. (15)–(17) leads to

h � hw ¼
X6

i¼1

ðai þ biBrÞy�i ð19Þ

The coefficients ai and bi are function of the dimen-

sionless pressure gradient (G) and the viscoelastic group

(eDe2). Coefficients ai and bi are given in Table 1 of

Appendix A.

The dimensionless wall temperature hw, using the

definition of the mean temperature, is given by following

equation (Shah and London [11]):

hw ¼ 1

�u�

Z 1

0

ðhw � hÞu� dy� ð20Þ

By substitution of Eqs. (15) and (19) into Eq. (20), the

dimensionless wall temperature is calculated:

hw ¼ cþ dBr ð21Þ

where

c ¼ 1

�u�2
X3

j¼1

X2j
i¼0

cijGð2j�iÞs�i0l

 !
ðeDe2Þðj�1Þ ð22Þ
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d ¼ 1

�u�
X3

j¼1

X2jþ1

i¼0

d1ijGð2j�iþ1Þs�i0l

 !
ðeDe2Þðj�1Þ

þ 1

�u�2
X5

j¼2

X2j
i¼0

d2ijGð2j�iÞs�i0l

 !
ðeDe2Þðj�2Þ ð23Þ
NuN ¼ ðG� 6Þ2

13

70
G2 � 13

5
Gþ 48

5
� Br

3

1120
G4 � 3

35
G3 þ 117

140
G2 � 12

5
Gþ 21

10

� � ð25Þ
The constant coefficients cij, d1ij and d2ij are given in

Appendix A (Table 2). Combining Eqs. (10) and (21),

the Nusselt number at the heated plate is obtained:
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Fig. 2. Dimensionless temperature profil
Nu ¼ 2

cþ dBr
ð24Þ
For Newtonian fluids, the particular equation of the

Nusselt number is
For Newtonian fluids when both plates are stationary, G
approaches infinity, and the value of the Nusselt number

is equal to 5.385.
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4. Discussion

4.1. Effect of G and eDe2 on the Nusselt number

Figs. 2(d)–(f) and 3a present the variation of the

dimensionless temperature profile and the Nusselt

number with the dimensionless viscoelastic group eDe2

respectively, for different values of G when the viscous

dissipation is negligible. Based on Eq. (10), the Nusselt

number is only related to the dimensionless wall tem-

perature. Negative and positive values of G correspond

to the combination of drag and pressure flow (Couette–

Poiseuille) whereas zero corresponds to pure drag

(Couette) flow. For positive values of G, backflow exists

in the channel. From Fig. 3(a), when eDe2 is zero, the

flow behaves as a Newtonian fluid and the effect of G on

the Nusselt number is negligible. For positive values of

G, increasing the dimensionless viscoelastic group in-

creases the dimensionless wall temperature (Fig. 2(d)),

and a decrease in the Nusselt number is observed. For
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Fig. 3. The variation of the N
negative values of G, this behavior is reversed (Fig. 2(f)).

For G ¼ 0, the dimensionless wall temperature is inde-

pendent of the viscoelastic group (Fig. 2(e)) and a con-

stant Nusselt number prevails.

4.2. Effect of viscous dissipation on the Nusselt number

The effect of viscous dissipation is very important

when the viscosity is high or for high shear flows. The

Brinkman number is commonly used as a parameter to

characterize the relative importance of viscous dissipa-

tion compared to the external heat transfer.

The effect of viscous dissipation on the temperature

profile for different values of G and eDe2 are presented in

Fig. 2. Fig. 3 also shows the effect of the Brinkman

number on the Nusselt number for different values of G
and eDe2. Because the shear rate is highest near the fixed

plate, the effect of viscous heating is most significant in

that region. The dimensionless wall temperature in-

creases with an increase in the viscous dissipation and,
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as a result, the Nusselt number decreases. The magni-

tude of the reduction depends on the values of G. When

G is positive, the effect of viscous dissipation on the

Nusselt number is not as significant as for null and

negative values of G, as observed by the influence of the

Brinkman number on the Nusselt number.
5. Conclusion

In this investigation, an analytical solution was de-

rived for heat transfer between parallel plates under

steady, laminar, and hydrodynamically and thermally
Appendix A

Table 1. Coefficients of polynomial equation (19)

a1 ¼ �1 b

a2 ¼ 0 b

a3 ¼ � 1

6�u�
ds�0 b

a4 ¼
G

24�u�
d þ 4s�20 eDe2
� �

b

a5 ¼ � eDe2s�0G
2

10�u�
b

a6 ¼ � eDe2G3

60�u�
b

where

s�0 ¼
a

6eDe2
� 1

2a
ðeDe2G2 þ 2Þ þ 1

2
G;

�u� ¼ � 1

2
s�0 þ

1

6
Gþ eDe2

1

10
G3

�
� 1

2
s�0G

2 þ s�20 G� s�30

�
;

a ¼

0
@
2
4 � 54þ 3 3

ðeDe2Þ3G6 þ 6ðeDe2Þ2G4 þ ð12G2 þ 108ÞðeD
eDe2

"

b ¼
�
� 2

5
G4 þ 2s�0G

3 � 4s�20 G2 þ 4s�30 G� 2s�40

�
eDe2 � 1

3
G2 þ

Table 2. Coefficients of polynomial equation (22)

ji 0 1 2 3 4

c 1 1
56

� 7
72

2
15

2 5
216

� 7
40

109
210

� 7
9

8
15

3 1
132

� 11
150

19
60

� 4
5

263
216

d1 1 1
28

� 7
36

41
120

� 5
24

2 5
72

� 21
40

337
210

� 77
30

11
5

3 1
33

� 22
75

19
15

� 16
5

536
105
developed flow. The lower plate was at rest and sub-

jected to a constant heat flux whereas the upper plate

was moving at constant speed and insulated. The sim-

plified Phan-Thien–Tanner (SPTT) model was used as

the viscoelastic model. This investigation included the

effect of viscous dissipation on heat transfer. Results

emphasize the significant effect of viscous heating on

the Nusselt number. Increasing the Brinkman number

decreases the heat transfer to the fluid. Also the prod-

uct of the elongational parameter and the Deborah

number is an important parameter and, depending on

the values of G, may greatly influence the heat transfer

coefficient.
1 ¼ 0

2 ¼
1

2
ds�20

3 ¼ a3 b þ 2�u�Gð Þ � 2

3
eDe2s�30lG

4 ¼
G2

12
d þ 10s�20 eDe2
� �

þ ba4

5 ¼ a5 4�u�Gþ bð Þ

6 ¼ a6 4�u� þ bð Þ

e2Þ þ 8
#1

2

1
AðeDe2Þ2

3
5

1
3

;

s�0G� s�20 :

5 6 7 8 9 10

� 7
6

8
15

� 5
6

� 77
15

91
30

� 5
6



Table 2 (continued)

ji 0 1 2 3 4 5 6 7 8 9 10

d2 2 � 1
168

19
378

� 67
420

83
360

� 2
15

3 � 337
22680

59
378

� 466
675

12703
7560

� 613
252

367
180

� 4
5

4 � 7
594

881
5940

� 34789
41580

52891
18900

� 28943
4725

3799
420

� 2797
315

97
18

� 8
5

5 � 1
330

367
8250

� 167
550

2107
1650

� 14153
3850

3982
525

� 11959
1050

432
35

� 977
105

67
15

� 16
15
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